Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Profiling epithelial viral receptor expression in amniotic membrane and nasal epithelial cells at birth

Children with wheeze and asthma present with airway epithelial vulnerabilities, such as impaired responses to viral infection. It is postulated that the in utero environment may contribute to the development of airway epithelial vulnerabilities.  

Research

Phage cocktail amikacin combination as a potential therapy for bacteremia associated with carbapenemase producing colistin resistant Klebsiella pneumoniae

The increasing occurrence of hospital-associated infections, particularly bacteremia, caused by extensively drug-resistant (XDR) carbapenemase-producing colistin-resistant Klebsiella pneumoniae highlights a critical requirement to discover new therapeutic alternatives. Bacteriophages having host-specific bacteriolytic effects are promising alternatives for combating these pathogens. 

Research

Suppression of TGF-β/SMAD signaling by an inner nuclear membrane phosphatase complex

Cytokines of the TGF-β superfamily control essential cell fate decisions via receptor regulated SMAD (R-SMAD) transcription factors. Ligand-induced R-SMAD phosphorylation in the cytosol triggers their activation and nuclear accumulation. We determine how R-SMADs are inactivated by dephosphorylation in the cell nucleus to counteract signaling by TGF-β superfamily ligands. 

Research

Identifying High-Risk Bacteria with Active Nasal Swab Surveillance in Intensive Care Units to Prevent Ventilator-Associated Pneumonia

Active nasal surveillance culture (ANSC) is recognized to enable rapid detection of antibiotic-resistant bacteria in the intensive care unit (ICU), which can contribute to the prevention of Ventilator-associated pneumonia (VAP). This study aims to evaluate the usefulness of ANSC in assessing the development of VAP in ICU patients.

Research

The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model

Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice.