Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Gut Microbiome and Associated Metabolites Following Bariatric Surgery and Comparison to Healthy Controls

The gut microbiome plays a significant role in regulating the host’s ability to store fat, which impacts the development of obesity. This observational cohort study recruited obese adult men and women scheduled to undergo sleeve gastrectomy and followed up with them 6 months post-surgery to analyse their microbial taxonomic profiles and associated metabolites in comparison to a healthy control group.

Research

Development of a Symptom-Based Tool for Screening of Children at High Risk of Preschool Asthma

Despite advances in asthma therapeutics, the burden remains highest in preschool children; therefore, it is critical to identify primary care tools that distinguish preschool children at high risk for burdensome disease for further evaluation.

Research

Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends

To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread.

Research

Adipose tissue in the small airways: How much is enough to drive functional changes?

Obesity is a contributing factor to asthma severity; while it has long been understood that obesity is related to greater asthma burden, the mechanisms though which this occurs have not been fully elucidated. One common explanation is that obesity mechanically reduces lung volume through accumulation of adipose tissue external to the thoracic cavity.

Research

Preterm birth and exercise capacity: what do we currently know?

The long-term cardiopulmonary outcomes following preterm birth during the surfactant era remain unclear. Respiratory symptoms, particularly exertional symptoms, are common in preterm children. Therefore, cardiopulmonary exercise testing may provide insights into the pathophysiology driving exertional respiratory symptoms in those born preterm. This review aims to outline the current knowledge of cardiopulmonary exercise testing in the assessment of children born preterm in the surfactant era.