Skip to content
The Kids Research Institute Australia logo
Donate

Search

Research

Thoracic electrical impedance tomography identifies heterogeneity in lungs associated with respiratory disease in cattle. A pilot study

Respiratory disease in cattle is a significant global concern, yet current diagnostic methods are limited, and there is a lack of crush-side tests for detecting active disease. To address this gap, we propose utilizing electrical impedance tomography (EIT), a non-invasive imaging technique that provides real-time visualization of lung ventilation dynamics.

Research

OMIP-100: A flow cytometry panel to investigate human neutrophil subsets

This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. 

Research

Gut microbiota and metabolomics profiles in patients with chronic stable angina and acute coronary syndrome

Cardiovascular disease is the leading cause of death worldwide. The gut microbiota and its associated metabolites may be involved in the development and progression of CVD, although the mechanisms and impact on clinical outcomes are not fully understood. This study investigated the gut microbiome profile and associated metabolites in patients with chronic stable angina and acute coronary syndrome compared with healthy controls.

Research

Interobserver Agreement When Diagnosing Hypoventilation in Children With Neuromuscular Disorders

Neuromuscular disorders can lead to nocturnal hypoventilation. Accurate diagnosis of hypoventilation is imperative to guide treatment decisions. This study determined interobserver agreement for a number of definitions of nocturnal hypoventilation in children and adolescents with neuromuscular disorders.

Research

Novel intranasal phage-CaEDTA-ceftazidime/avibactam triple combination therapy demonstrates remarkable efficacy in treating Pseudomonas aeruginosa lung infection

Given the rise of multidrug-resistant (MDR) Pseudomonas aeruginosa infections, alternative treatments are needed. Anti-pseudomonal phage therapy shows promise, but its clinical application is limited due to the development of resistance and a lack of biofilm penetration.